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Abstract
Type rules associate types to expressions given a typing con-
text. As the type checker traverses the expression tree top-
down, it extends the typing context with additional context
information that becomes available. This way, the typing
context coordinates type checking in otherwise independent
subexpressions, which inhibits parallelization and incremen-
talization of type checking.

We propose a co-contextual formulation of type rules that
only take an expression as input and produce a type and a
set of context requirements. Co-contextual type checkers tra-
verse an expression tree bottom-up and merge context require-
ments of independently checked subexpressions. We describe
a method for systematically constructing a co-contextual for-
mulation of type rules from a regular context-based formu-
lation and we show how co-contextual type rules give rise
to incremental type checking. Using our method, we derive
incremental type checkers for PCF and for extensions that
introduce records, parametric polymorphism, and subtyping.
Our performance evaluation shows that co-contextual type
checking has performance comparable to standard context-
based type checking, and incrementalization can improve
performance significantly.

Categories and Subject Descriptors F.3.1 [Specifying and
Verifying and Reasoning about Programs]; F.3.2 [Seman-
tics of Programming Languages]: Program analysis; F.4.1
[Mathematical Logic]: Lambda calculus and related systems

Keywords type checking; type inference; incremental; co-
contextual; constraints; tree folding

1. Introduction
Type checkers of modern programming languages play an
important role in assuring software quality as they try to
statically prove increasingly strong invariants over programs.

Typically, a type checker starts processing at the root node
of a syntax tree and takes a typing context as an additional
input to coordinate between sub-derivations by assigning
types to jointly used variables. While traversing down the
tree, the type checker extends the context with type bindings,
making them available in subexpressions. When the type
checker reaches a variable, it looks up the corresponding
binding in the typing context. Since variables constitute
leaves of the syntax tree, the downward traversal ends. The
type checker then propagates the derived types back upward
the syntax tree. In summary, while types flow bottom-up,
typing contexts flow top-down – overall, the type system runs
in a "down-up" mode.

The top-down context propagation of contexts has some
problems. It hampers parallel and incremental type checking
as well as compositional type checking because the typing
of subexpressions depends on the typing of parent expres-
sions (to retrieve the context) and vice versa (to retrieve the
types). In practice, type checking may take considerable time.
Especially for large software systems, it is important to re-
duce the run time of type checking to enable short feedback
cycles [14]. To this end, some forms of incremental type
checking find increasing interest in industry and, for example,
are used in Eclipse’s JDT and Facebook’s Flow and Hack.
In this paper, we present a generic method for constructing
incremental type systems from standard type systems.

To enable type checkers with fine-grained incrementaliza-
tion, we propose to eliminate top-down propagated contexts
and to replace them by the dual concept of bottom-up prop-
agated context requirements. We call such a type checking
co-contextual. A co-contextual type checker starts processing
at the leaves. Instead of looking up variables in a context, it
invents fresh type variables as placeholders for their actual
types. In addition, the co-contextual type checker generates
context requirements which demand that the variables are ac-
tually bound with this type. As the co-contextual type checker
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(a) Contextual type checking propagates contexts top-down.
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(b) Co-contextual type checking propagates contexts bottom-up.

Figure 1. Contextual and co-contextual type checking.

progresses up the syntax tree, it refines the types of subex-
pressions and merges their context requirements.

To give an intuition about our proposal, we consider
the process of type checking the simply-typed expression
λf :α→β. λx :α. f x (α and β are arbitrary but fixed types)
with an ordinary and a co-contextual type checker. Figure 1(a)
depicts the ordinary type checking. It shows the syntax tree
of the expression explicitly, marking the application term
with app. We attach typing contexts and types to syntax tree
nodes on their left-hand and right-hand side, respectively.
The type attached to a node represents the type of the whole
subexpression.

Figure 1(b) depicts the process of type checking the same
expression by a co-contextual type checker. We separate a
node’s type T and context requirements R by a vertical bar
T | R. The following tree illustrates how a co-contextual type
check enables type checking a program bottom-up.

For the application term, the type checker refines U0

to be a function type from U1 to a fresh type variable
U2, which becomes the result type of the application term.
Next, the type checker collects all context requirements of
subexpressions, applies the type substitution {U0 7→U1→U2}
to them, and propagates them upward. This changes the
type of f in the requirements. A λ-abstraction eliminates
context requirements on the bound variable. When reaching
the λ-abstraction of x, the type checker matches the required
type for x with the declared type of x and propagates only
the remaining requirement on f upward. Finally, the co-
contextual type checker finds the same type as the context-

based type checker above, and all context requirements have
been satisfied. Any remaining context requirements in the
root node of a program indicate a type error.

To see how co-contextual type checking avoids contextual
coordination, consider the program λx :U0. x x. A context-
based type checker propagates a single context Γ;x :U0 to
all subexpressions of the λ-abstraction, thus making sure
that U0 is used consistently as the type of x. In contrast, a
co-contextual type checker generates context requirements
x :U1 and x :U2 for the two variable nodes independently.
Only when merging these requirements in the application
term xx, the type checker coordinates the type of x by
refining U1 = U2. In our example, this leads to a type error
because type checking the application term also refines U1 to
a function type U2→U3. Thus, the type checker derives the
unsolvable constraint U2 = U2→U3 and correctly indicates
a type error.

Since co-contextual type checkers do not coordinate sub-
derivations, it is possible to incrementalize them system-
atically by applying memoization, incremental constraint
solving, and eager substitution. Such incrementalization is
independent of the module structure of the program.

In summary, we make the following contributions:

• We describe a generic method for constructing co-
contextual type rules from traditional context-based type
rules.
• We derive co-contextual type systems for PCF and for

extensions that handle records, parametric polymorphism,
and subtyping.
• We describe how co-contextual type systems give rise to

incremental type checking, given that the type rules are in
algorithmic form.
• We explain how to implement incremental type checking

efficiently and describe implementations for PCF and its
extensions.
• We evaluate the non-incremental and incremental perfor-

mance of the co-contextual PCF type checker by compari-
son to a context-based algorithm.

2. Constructing Co-Contextual Type Systems
We can systematically construct co-contextual type rules
from context-based type rules. The core idea is to eliminate
the context and its propagation and instead to introduce
context requirements that are propagated upward the typing
derivation. The expressions and types involved in a type rule
do not change. In this section, we illustrate how to derive
a co-contextual type system for PCF. We use the following
syntax for the expressions, types, and contexts of PCF:



T-NUM
Γ ` n : Num | ∅

T-ADD
Γ ` e1 : T1 | C1 Γ ` e2 : T2 | C2

Γ ` e1 + e2 : Num | C1 ∪ C2 ∪ {T1 = Num, T2 = Num}

T-VAR
Γ(x) = T

Γ ` x : T | ∅
T-ABS

Γ;x :T1 ` e : T2 | C
Γ ` λx :T1. e : T1→T2 | C

T-APP
Γ ` e1 : T1 | C1 Γ ` e2 : T2 | C2 U is fresh

Γ ` e1 e2 : U | C1 ∪ C2 ∪ {T1 = T2→U}

T-FIX
Γ ` e : T | C U is fresh

Γ ` fix e : U | C ∪ {T = U→U}
T-IF0

Γ ` e1 : T1 | C1 Γ ` e2 : T2 | C2 Γ ` e3 : T3 | C3

Γ ` if0 e1 e2 e3 : T2 | C1 ∪ C2 ∪ C3 ∪ {T1 = Num, T2 = T3}

Figure 2. A contextual constraint-based formulation of the type system of PCF.

Contextual Co-contextual

Judgment Γ ` e : T | C Judgment e : T | C | R
Context syntax Γ ::= ∅ | Γ;x :T Requirements R ⊂ x× T map variables to their types
Context lookup Γ(x) = T Requirement introduction R = {x :U} with fresh unification variable U
Context extension Γ;x :T Requirement satisfaction R− x if (R(x) = T ) holds
Context duplication Γ→ (Γ,Γ) Requirement merging merge(R1, R2) = R|C if all constraints (T1 = T2) ∈ C hold

Context is empty Γ = ∅ No unsatisfied requirements R !
= ∅

Figure 3. Operations on contexts and their co-contextual correspondence.

e ::= n | x | λx :T. e | fix e expressions
| e e | e+ e | if0 e e e

T ::= Num | T →T types
Γ ::= ∅ | Γ;x :T typing contexts

Let us consider the type rule for variables first. Traditionally,
the PCF rule for variables looks like this:

T-VAR
Γ(x) = T

Γ ` x : T

To co-contextualize this rule, we have to define it without a
context. As a consequence, we cannot determine the type T
of variable x, which depends on the binding and the usage
context of x. To resolve this situation and to define a co-
contextual type rule for variables, we apply a trick known
from type inference: We generate a fresh type variable and
use it as placeholder for the actual type of x. When more
information about the type of x becomes available later on
during type checking, we use type constraints and unification
to retroactively refine the type of variable references. For
instance, in the example from Section 1, we use fresh type
variables U0 and U1 for the variable references f and x.
Later, when checking the application of f to x, we refine
the type of f by adding the type constraint U0 = U1→U2,
where U2 is a fresh type variable itself. As this shows, a
co-contextual type checker discovers type refinements in the
form of constraints during type checking. Throughout the
paper, we use the metavariable U for type variables that are
unification variables and we use the metavariable X for user-
defined type variables when they occur later on:

T ::= . . . | U unification type variables

Reformulating type rules such that they produce type
constraints instead of performing the actual type check is
a standard technique in the context of type inference and
type reconstruction [19]. In this work, we assume that the
original type rules are given in a constraint-based style and
take this as starting point for deriving co-contextual type
rules. That is, we assume the original typing judgment has
the form Γ ` e : T | C, where Γ is the typing context, e is
the expression under analysis, and T is the type of e if all
type constraints in set C hold. For reference, Figure 2 shows
the constraint-based contextual type rules of PCF, where type
constraints take the form of equalities:

c ∈ C ::= T = T type constraints

Co-contextual type rules use judgments of the form
e : T | C | R, where e is the expression under analysis
and T is the type of e if all type constraints in set C hold
and all requirements in set R are satisfied. We can system-
atically construct co-contextual type rules for PCF from
constraint-based contextual type rules through dualization.
That is, we replace downward-propagated contexts with
upward-propagated context requirements and we replace
operations on contexts by their dual operations on context
requirements as described in the following subsection.

2.1 Co-Contextual Syntax and Operations
We propose to use duality as a generic method for deriving
co-contextual type systems. Figure 3 summarizes contextual
and co-contextual syntax and operations for PCF. The syntax
of context requirements is analogous to the syntax of typing



T-NUM
n : Num | ∅ | ∅

T-ADD
e1 : T1 | C1 | R1 e2 : T2 | C2 | R2 merge(R1, R2) = R|C
e1 + e2 : Num | C1 ∪ C2 ∪ {T1 = Num, T2 = Num} ∪ C | R

T-VAR
U is fresh

x : U | ∅ | x :U
T-ABS

e : T2 | C | R
Cx = {T1=R(x) | if x ∈ dom(R)}
λx :T1. e : T1→T2 | C∪Cx | R− x

T-APP

e1 : T1 | C1 | R1 e2 : T2 | C2 | R2

U is fresh merge(R1, R2) = R|C
e1 e2 : U | C1∪C2∪{T1 = T2→U}∪ C | R

T-FIX
e : T | C | R U is fresh

fix e : U | C ∪ {T = U→U} | R
T-IF0

e1 : T1 | C1 | R1 e2 : T2 | C2 | R2 e3 : T3 | C3 | R3

merge(R1, R2, R3) = R|C
if0 e1 e2 e3 : T2 | C1 ∪ C2 ∪ C3 ∪ {T1 = Num, T2 = T3} ∪ C | R

Figure 4. A co-contextual constraint-based formulation of the type system of PCF.

contexts. We represent context requirements as a set of type
bindings x :T . Importantly, context requirements are not
ordered and we maintain the invariant that there is at most
one binding for x in any context-requirements set.

The first contextual operation is context lookup, which
we translate into the dual operation of introducing a new
context requirement. The context requirement declares that
variable x must be well-typed and has type U , which is
a fresh unification variable. Note the difference between
co-contextual type checking and traditional type inference:
Type inference generates a single fresh unification variable
U when variable x is introduced (for example, by a λ-
abstraction) and coordinates the typing of x via the context.
In contrast, a co-contextual type system generates a new fresh
unification variable for every reference of x in the syntax tree.
Consequently, co-contextual type checkers typically produce
more unification variables than context-based type inference,
but they require no coordination.

The second operation is the extension of a context Γ
with a new binding x :T . The co-contextual operation must
perform the dual operation on context requirements, that is,
eliminate a context requirement and reduce the set of context
requirements. When eliminating a context requirement, it is
important to validate that the requirement actually is satisfied.
To this end, a co-contextual type system must check that the
type of x that is required by the context requirements R(x) is
equivalent to T , the type that the original type rule assigned
to x. If the constraint solver later finds that R(x) = T does
not hold, the type system has identified a context requirement
that does not match the actual context. This indicates a type
error.

The third operation is the duplication of a typing context,
typically to provide it as input to multiple premises of a type
rule. Context duplication effectively coordinates typing in
the premises. The dual, co-contextual operation merges the
context requirements of the premises, thus computing a sin-
gle set of context requirements to propagate upward. Since
the context requirements of the premises are generated inde-
pendently, they may disagree on requirements for variables

that occur in multiple subderivations. Accordingly, it is nec-
essary to retroactively assure that the variables get assigned
the same type. To this end, we use an auxiliary function
merge(R1, R2) that identifies overlapping requirements in
R1 and R2 and generates a merged set of requirements R and
a set of type-equality constraints C:

merge(R1, R2) = R|C
where R = R1 ∪ {x :R2(x) | x ∈ dom(R2) \ dom(R1)}

C = {R1(x) = R2(x) | x ∈ dom(R1) ∩ dom(R2)}

Function merge is defined such that the merged requirements
R favor R1 in case of an overlap. This choice is not essential
since it gets an equality constraint R1(x) = R2(x) for each
overlapping x anyways. Based on merge, we assume the
existence of an n-ary function also called merge that takes
n requirement sets as input and merges all of them, yielding
a single requirements set and a set of constraints. For more
advanced type systems, we will need to refine function merge
(see Section 3).

The final operation to consider is the selection of an
empty context. An empty context means that no variables
are bound. For example, this occurs when type checking
starts on the root expression. Dually, we stipulate that no
context requirements may be left unsatisfied. Note that while
the contextual operation selects the empty context, the co-
contextual counterpart asserts that subderivations yield an
empty requirement set. The difference is that a contextual
type check fails when an unbound reference is encountered,
whereas the co-contextual type check fails when the context
requirement of an unbound variable cannot be satisfied.

We defined the translation from contextual operations
to co-contextual operations in a compositional manner by
applying duality. As a result, our translation is applicable
to compound contextual operations, such as duplicating an
extended context or extending an empty context to describe a
non-empty initial context.



2.2 Co-Contextual PCF
Figure 4 shows the co-contextual type rules of PCF, which
we derived according to the method described above. The
derivation of T-NUM and T-FIX is straightforward as neither rule
involves any context operation. In rule T-VAR, dual to context
lookup, we require x is bound to type U in the context. In
rule T-ABS, dual to context extension with x, we check if
variable x has been required by the function body e. If there
is a requirement for x, we add the constraint T1=R(x) and
remove that requirement R− x. Otherwise Cx is empty and
we only propagate the constraints of the body.

The remaining rules T-ADD, T-APP, and T-IF0 use requirement
merging dual to the duplication of contexts in the original
rules. Each merge gives rise to an additional set of constraints
that we propagate. Note that in T-IF0 we have to merge
requirements from all three subexpressions.

We can use the co-contextual type rules to compute
the type of PCF expressions. Given an expression e and a
derivation e : Te | C | R, e is well-typed if R is empty and
the constraint system C is solvable. If e is well-typed, let
σ : U→T be a type substitution that solves the constraint
system C. Then, the type of e is σ(Te).

In Section 1, we showed an example derivation of co-
contextual type checking the expression λf :α→β. (λx :α.
f x). For presentation’s sake, we eagerly solved constraints
and applied the resulting substitutions. Actually, the co-
contextual PCF type system defined here generates the
constraint set {U0 = U1→U2, U1 = α,U0 = α→β}
and derives the result type T = (α→β)→α→U2. Sub-
sequent constraint solving yields the substitution σ =
{U0 7→(α→β), U1 7→α,U2 7→β} and the final result type
σ(T ) = (α→β)→α→β.

We prove that our co-contextual formulation of PCF is
equivalent to PCF. To relate derivations on open expressions
containing free variables, we demand the context require-
ments to be a subset of the provided typing context. In par-
ticular, we get equivalence for closed expressions by setting
Γ = ∅ and R = ∅. In our formulation, we call a syntactic
entity ground if it does not contain unification variables and
we write Γ ⊇ R if Γ(x) = R(x) for all x ∈ dom(R). The
following theorem establishes the equivalence of the two
formulations of PCF:

Theorem 1. A program e is typeable in contextual PCF if
and only if it is typeable in co-contextual PCF:

Γ ` e : T | C and solve(C) = σ such that
σ(T ) and σ(Γ) are ground

if and only if
e : T ′ | C ′ | R and solve(C ′) = σ′ such that
σ′(T ′) and σ′(R) are ground

If e is typeable in contextual and co-contextual PCF as above,
then σ(T ) = σ′(T ′) and σ(Γ) ⊇ σ′(R).

Proof. By structural induction on e. A detailed proof appears
in Appendix A.

T-RECORD

ei : Ti | Ci | Ri for i ∈ 1 . . . n
merge(R1, . . . , Rn) = R|CR

⋃
i∈1...n Ci = C

{li = ei}i∈1...n : {li :Ti}i∈1...n | C ∪ CR | R

T-LOOKUP
e : T | C | R U is fresh
e.l : U | C ∪ {T.l = U} | R

Figure 5. Co-contextual type rules for records.

3. Extensions of PCF
In this section, we present co-contextual type systems for
extensions of PCF with records, parametric polymorphism,
and subtyping.

3.1 Simple Extensions: Records
Many type-system features do not change or inspect the typ-
ing context. We can define such features as simple extensions
of the co-contextual PCF type system. As a representative for
such features, we present an extension with records, using the
following extended syntax for expressions, types, and type
constraints:

e ::= . . . | {li = ei}i∈1...n | e.l record expressions
T ::= . . . | {li :Ti}i∈1...n record types
c ::= . . . | T.l = T field type constraint

The additional type rules for records appear in Figure 5.
Type rule T-RECORD defines how to type check record expres-
sions {li = ei}i∈1...n. The type of the record expression is a
record type, where each label is associated type Ti of subex-
pression ei. To type check the subexpressions ei, a traditional
contextual type rule for record expressions uses a replica
of its typing context for each subderivation. In accordance
with the definitions in Figure 3, a co-contextual type rule for
record expressions merges the requirements of all subderiva-
tions. Type rule T-RECORD in Figure 5 merges the requirements
Ri into the fully merged requirements set R with additional
constraints CR. We propagate the merged requirements, the
additional constraints, and the original constraints Ci of the
subderivations.

Type rule T-LOOKUP defines type checking for field lookup
e.l. In our setting, we cannot simply match the type T of e
to extract the type of field l because T may be a unification
variable that is only resolved later after solving the generated
constraints. Instead, we use a constraint T.l = U that
expresses that T is a record type that contains a field l of
type U .

Similar to records, we can easily define further simple
extensions of our co-contextual formulation of PCF, such as
variants or references.



T-TABS
e : T | C | (R,RT )

λX. e : ∀X.T | C | (R,RT−X)
T-TAPP

e : T1 | C | (R,R
T
e ) U,Ub, Ur is fresh ` T ok | RT

e[T ] : Ur | C∪{T1 = ∀U.Ub}∪{Ur ={U 7→T}Ub} | (R,R
T
e ∪R

T )

T-ABS

e : T2 | C | (R,R
T
e ) ` T1 ok | RT

1

Cx = {T1=R(x) | if x ∈ dom(R)}
λx :T1. e : T1→T2 | C ∪ Cx | (R− x,R

T
e ∪R

T
1 )

T-APP

e1 : T1 | C1 | (R1, R
T
1 ) e2 : T2 | C2 | (R2, R

T
2 )

U is fresh merge(R1, R2) = R|C
e1 e2 : U | C1∪C2∪{T1 = T2→U}∪ C | (R,RT

1 ∪R
T
2 )

Figure 6. Co-contextual type rules for parametric polymorphism.

3.2 Parametric Polymorphism
In the following, we present the co-contextual formulation of
PCF extended with parametric polymorphism. This extension
is interesting with respect to our co-contextual formulation
because (i) the type checker can encounter type applications
without knowledge of the underlying universal type and (ii)
parametric polymorphism requires further context operations
to ensure that there are no unbound type variables in a
program. To support parametric polymorphism, we first add
new syntactic forms for type abstraction and application as
well as for type variables and universal types.

e ::= . . . | λX. e | e[T ]
T ::= . . . | X | ∀X.T | ∀U. T
c ::= . . . | T ={X 7→T}T | T ={U 7→T}T

Note that due to the constraint-based nature of co-contextual
type checking, we require support for universal types that
quantify over user-supplied type variables X as well as
unification type variables U . Importantly, the universal type
∀U. T does not bind the unification variable U ; unification
variables are always bound globally. Instead, ∀U. T binds
the type variable that will eventually replace U . Moreover,
we require new constraints of the form T1 ={X 7→T2}T3 that
express that T1 is the result of substituting T2 forX in T3. We
define similar constraints for substituting unification variables.
However, their semantics differ in that the constraint solver
must delay the substitution of a unification variable until it
is resolved to a proper type. For example, the substitution
in T1 ={U 7→T2}X must be delayed because it might later
turn out that U = X . Furthermore, the constraint solver may
not substitute user-supplied type variables X as they are not
unification variables, hence the constraint X1 = X2→X2

does not hold. This distinction of type variables also entails
specific rules for the substitution and unification of universal
types, which permits the refinement of unification variables
even when they appear as binding or bound occurrences.

Since parametric polymorphism introduces bindings for
type variables, we also need to track that no unbound type
variables occur in a program. A traditional contextual type
checker adds bound type variables to the typing context and
checks that all occurrences of type variables are indeed bound.
We can use the same strategy as for term variables (Sec-
tion 2) to co-contextualize type-variable handling. In particu-

lar, we introduce an additional requirements component for
type variables RT ⊂ X and extend our typing judgment
e : T | C | (R,RT ) to propagate required type variables RT .
Dual to lookup and introduction of type variables in contex-
tual type checking, we produce type-variable requirements
when checking a user-supplied type for well-formedness
` T ok | RT and we eliminate type-variable requirements
when binding a type variable in a type-level λ-abstraction.
As before, an expression is only well-typed if all require-
ments are satisfied, that is, there are neither term-variable nor
type-variable requirements on the root of the syntax tree.

Figure 6 shows the type rules for type abstraction, type
application, and term abstraction. Rule T-TABS handles type
abstraction λX. e. It eliminates type-variable requirements
on the bound type variable X and propagates the remaining
type-variable requirementsRT −X . Rule T-TAPP handles type
applications e[T ]. It checks the subexpression e for well-
typedness and the application type T for well-formedness
and propagates their combined type-variable requirements
RT

e ∪ R
T . As the first constraint of T-TAPP stipulates, type

application is only well-typed if the type of e is a universal
type ∀U.Ub. The type of the type application then is the result
of substituting T for U in Ub, as the second constraint defines.

Type rule T-ABS in Figure 6 is an extended version of the
co-contextual PCF rule for λ-abstraction from Figure 4. Due
to the existence of type variables, we added a premise that
checks the well-formedness of the type annotation T1. We
propagate the resulting type-variable requirements together
with the type-variable requirements of the function body.
Finally, type rule T-APP illustrates how to extend all other rules
of PCF such that they merge and propagate type-variable
requirements from subexpressions. Note that due to the
simplicity of type-variable requirements, the merge operation
is simply set union. We would require a more sophisticated
merge operation when introducing type variables of different
kinds, for example, to realize higher-order polymorphism.

To illustrate these type rules, consider the co-contextual
type checking of the polymorphic identity function instanti-
ated for Num: (λX. λx :X. x)[Num].



tapp [Num]

λX

λx :X

x

:Ur |

U0 = X,
∀X. (X→U0) = ∀U.Ub,
Ur ={U 7→Num}Ub

 | (∅, ∅)
:∀X. (X→U0) | {U0 = X} | (∅, ∅)

:X→U0 | {U0 = X} | (∅, {X})

:U0 | ∅ | (x :U0, ∅)

The type checker processes the expression bottom-up. First,
it associates a fresh unification variable U0 to x. Sec-
ond, the λ-abstraction binds x to type X , which yields
the constraint U0 = X and a type-variable requirement
on X . Third, this requirement is immediately discharged
by the type-level λ-abstraction that binds X . Finally, the
type application rule requires a universal type and com-
putes the result type Ur via a type-substitution constraint.
Subsequent constraint solving yields the substitution σ =
{U0 7→X,U 7→X,Ub 7→(X→X), Ur 7→(Num→Num)}.

Our type system rejects expressions with unbound type
variables. For example, the expression λf : Num→X. x 0
contains an unbound type variable X . When type checking
this expression in our type system, we receive an unsatisfied
type-variable requirement that represents this error precisely.
Furthermore, despite using constraints, our type system
correctly prevents any refinement of universally quantified
type variables. For example, our type system correctly rejects
the expression λX. λx :X. x+x, which tries to refine X to
Num to perform addition.

Type inference and let polymorphism. As discussed in
the previous section, co-contextual type checking is differ-
ent from type inference in that co-contextual type checking
avoids typing contexts and generates a fresh unification vari-
able for each variable reference in the syntax tree. Neverthe-
less, co-contextual type checking can infer types just as well,
because it already computes principal types.

For example, to support type inference for a let-polymor-
phic type system, four changes to our rules from Figure 6 are
necessary. First, remove rules T-TABS and T-TAPP and the cor-
responding expression syntax, because type abstraction and
application is inferred. Second, remove the type annotation
in T-ABS and use the type R(x) as argument type instead. If
R(x) is undefined, use a fresh unification variable. Third, add
a let construct and type rule T-LET that collects all free type
variables in the type of the bound expression and constructs a
typing schema. Due to constraint-based typing, the schema
construction needs to be deferred until the type of the bound
expression does not contain any unification variables (other-
wise one might miss some free type variables). Define a new
kind of constraint to express precisely that. Fourth, change
T-APP to use a new kind of constraint for instantiating type

schemas, instead of checking for equality of the argument
type directly.

3.3 Subtyping
As a final extension, we consider a co-contextual formulation
of PCF with subtyping. Subtyping is an interesting extension
because it affects the semantics of a typing contexts and,
hence, context requirements. In particular, subtyping weakens
the assumptions about variable bindings x :T in typing
contexts. In standard PCF, (x :Tx; Γ) means that variable
x has exactly type Tx. In contrast, in PCF with subtyping,
(x :Tx; Γ) means that Tx is an upper bound of the type of
values substitutable for x: All values must at least adhere
to Tx. Dually, a type annotation Tx on a λ-abstraction is a
lower bound for the type required for x in subexpressions:
Subexpressions can at most require Tx. Thus, subtyping
affects the merging and satisfaction of context requirements.

We adapt the definition of merge to correctly combine re-
quirements from different subexpressions. Due to subtyping,
different subexpressions can require different types on the
same variable. In consequence, a variable has to simultane-
ously satisfy the requirements of all subexpressions that refer
to it. That is, when we merge overlapping context require-
ments, we require the type of shared variables to be a subtype
of both originally required types:

merge(R1, R2) = R|C
where X = dom(R1) ∩ dom(R2)

Ux = fresh variable for each x ∈ X
R = (R1 − dom(R2)) ∪ (R2 − dom(R1))

∪ {x :Ux | x ∈ X}
C = {Ux<:R1(x), Ux<:R2(x) | x ∈ X}

We do not stipulate a specific subtyping relation. However,
we add new forms of type constraints with standard semantics
to express subtyping, joins, and meets:

c ::= . . . | T <: T subtype constraint
| T = T ∨ T least upper bound (join)
| T = T ∧ T greatest lower bound (meet)

A least upper bound constraint T1 = T2 ∨ T3 states that type
T1 is the least type in the subtype relation such that both T2
and T3 are subtypes of T1. A greatest lower bound constraint
T1 = T2 ∧ T3 states that the type T1 is the greatest type in
the subtype relation such that both T2 and T3 are supertypes
of T1.

Figure 7 shows the co-contextual rules for PCF enriched
with subtyping. Only the rules for λ-abstractions, applica-
tions, conditionals, and fixpoints change with respect to the
co-contextual PCF type system in Figure 4. First, consider
the rule for λ-abstraction T-ABS. As discussed above, a context
requirement on x only describes an upper bound on the de-
clared type of x. Or conversely, the declared type of a variable
x is a lower bound on what subexpressions can require for
x. Accordingly, we replace the type-equality constraint by a
subtype constraint T1<:R(x).



T-ABS

e : T2 | C | R
Cx = {T1<:R(x) | if x ∈ dom(R)}
λx :T1. e : T1→T2 | C ∪ Cx | R− x

T-APP

e1 : T1 | C1 | R1 e2 : T2 | C2 | R2

U1, U2 is fresh merge(R1, R2) = R|C
e1 e2 : U2 | C1 ∪ C2 ∪ {T1 = U1→U2, T2<: U1} ∪ C | R

T-IF0

e1 : T1 | C1 | R1 e2 : T2 | C2 | R2 e3 : T3 | C3 | R3

merge(R1, R2, R3) = R|CR
U is fresh

C = {T1 = Num, U = T2 ∨ T3} ∪ C1 ∪ C2 ∪ C3 ∪ CR

if0 e1 e2 e3 : U | C | R
T-FIX

e : T | C | R U1, U2 is fresh
fix e : U1 | C ∪ {T = U1→U2, U2<: U1} | R

Figure 7. Co-contextual type rules for PCF with subtyping.

The other rules T-APP, T-IF0, and T-FIX are straightforward
extensions to allow for subtyping. In rule T-APP, we allow the
argument to be of a subtype of the function’s parameter type
as usual. Rule T-IF0 declares the type of the conditional to
be the least upper bound of the two branch types, which we
express by the least upper bound constraint U = T1 ∨ T2.
In rule T-FIX, we permit the fixed function to produce values
whose type is a subtype of the function’s parameter type.

To illustrate co-contextual type checking with subtypes,
consider PCF with records and the usual depth and width
subtyping for records. When type checking the expression
e = x.m+x.n with free x, we get the following derivation:

+

.m

x

.n

x:U1 | ∅ | x :U1 :U2 | ∅ | x :U2

:U3 | {U3 = U1.m} | x :U1 :U4 | {U4 = U2.n} | x :U2

: Num |

U3 = U1.m, U4 = U2.n,
U3 = Num, U4 = Num,
U5<: U1, U5<: U2

 | x :U5

We can simplify the resulting constraint set by eliminating
U3 and U4 to get {Num = U1.m,Num = U2.n, U5 <:
U1, U5<: U2}, where U5 is the type required for x. Impor-
tantly, the type of x must be a subtype of U1 and U2, which
in turn must provide fields m and n respectively. Thus, the
type U5 of x must be a record type that at least provides
fields m and n. Indeed, when we close above expression
e as in λx :T. e, type rule T-ABS yields another constraint
T <: U5. Accordingly, type checking succeeds for an annota-
tion T = {m : Num, n : Num, o : Num→Num}. But type
checking correctly fails for an annotation T = {m : Num},
because T <: U2 by transitivity such that Num = U2.n is not
satisfiable.

4. Incremental Type Checking
Incremental computations often follow a simple strategy:
Whenever an input value changes, transitively recompute all
values that depend on a changed value until a fixed-point is
reached [18]. We apply the same strategy to incrementalize
type checking. As we will see, the avoidance of contextual co-

ordination in co-contextual type systems makes dependency
tracking particularly simple and thus enables incremental
type checking.

For illustration, we use the following PCF expressions as
a running example throughout this section. To simplify the
example, we added subtraction to PCF in a straightforward
manner.
mul = fix (λf : Num→Num→Num.

λm : Num. λn : Num. if0 m 0 (n+ f (m− 1)n))
notfac = fix (λf : Num→Num.

λn : Num. if0 (n− 1) 1 (mul n (f (n− 2))))

The first expression mul defines multiplication on top of
addition by recursion on the first argument. The second ex-
pression notfac looks similar to the factorial function, but
it is undefined for n = 0 and the recursive call subtracts 2
instead of 1 from n. Below, we exemplify how to incremen-
tally type check these expression when changing notfac to
match the factorial function. The initial type check of mul
and notfac generate 11 and 12 constraints, respectively.

4.1 Basic Incrementalization Scheme
In the previous sections, we defined co-contextual type rules
using a typing judgment of the form e : T | C | R. In this
section, we additionally assume that the type rules are given
in an algorithmic form, that is, they are syntax-directed and
their output is fully determined by their input. Therefore,
another way to understand the type rules is as a function
check1 : e→T × C ×R that maps an expression to its type,
typing constraints, and context requirements.

Note that check1 only depends on the expression and is
independent of any typing context. This means that an ex-
pression e is assigned the same type, constraints, and require-
ments independent of the usage context (modulo renaming
of unification variables). For example, check1(e) yields the
same result no matter if it occurs as a subderivation of e+ 5 or
λx : Num. e. The only difference is that some usage scenar-
ios may fail to satisfy the constraints or context requirements
generated for e. Accordingly, when an expression changes,
it is sufficient to propagate these changes up the expression
tree to the root node; siblings are never affected.



Based on this observation, we can define a simple incre-
mentalization scheme for co-contextual type checking:

E = set of non-memoized subexpressions in root

E
C = transitive closure of E under parent relationship

E
C
p = sequentialize E

C in syntax-tree post-order
for each e ∈ E

C
p

recompute and memoize the type of e
using the memoized types of its subexpressions

That is, we visit all subexpressions that have changed and all
subexpressions that (transitively) depend on changed subex-
pressions. We use a post-order traversal (i.e., bottom-up) to
ensure we visit all changed subexpressions of an expression
before recomputing the expression’s type. Accordingly, when
we type check an expression inEC

p , the types (and constraints
and requirements) of all subexpressions are already available
through memoization. We present an efficient implementation
of this scheme in Section 5.

To illustrate, let us consider the example expression
notfac from above. First, we observe that a change to notfac
never affects the typing of mul , which we can fully reuse.
When we change the if -condition of notfac from n− 1 to n,
our incremental type checker recomputes types for the expres-
sions EC

p = 〈ncond , if0 , λn, λf,fix 〉, starting at the changed
condition. Importantly, we reuse the memoized types from the
initial type check of the else-branch. When instead changing
the subtraction in the recursive call of notfac from n− 2 to
n− 1, the type checker recomputes types for the expressions
EC

p = 〈1, n−1, appf , appmul2 , if0 , λn, λf,fix 〉. While this
change entails lots of recomputation, we still can reuse results
from previous type checks for the application of mul to its
first argument and for the if -condition. Finally, consider what
happens when we introduce a type error by changing the
binding λn to λx. A contextual type checker would have to
reconstruct the derivation of the body because the context
changed and n now is unbound. In contrast, our incremen-
tal type checker can reuse all constraints from the body of
the abstraction and only has to regenerate the constraint for
fix. The table below summarizes the number of regenerated
and reused constraints. Our performance evaluation in Sec-
tion 6 confirms that incrementalization of type checking can
improve type-checking performance significantly.

Changes
in notfac

Regenerated
constraints

Reused
constraints

Reused
from mul

if -cond.
n− 1 7→ n

4 6 11

rec. call
n− 2 7→ n− 1

9 3 11

binding λn 7→ λx 1 11 11

4.2 Incremental Constraint Solving
In the previous subsection, we have developed an incremental
type checker check1 : e→T × C × R. However, all that

check1 actually does is to generate constraints and to collect
context requirements. That is, even when run incrementally,
check1 yields a potentially very large set of constraints that
we have to solve in order to compute the type of e. We
only incrementalized constraint generation but not constraint
solving so far.

Designing an incremental constraint solver is difficult be-
cause unification and substitution complicate precise depen-
dency tracking and updating of previously computed solu-
tions when a constraint is removed. However, since type rules
only add constraints but never skip any constraints from sub-
derivations, we can solve the intermediate constraint systems
and propagate and compose their solutions. To this end, we
assume the existence of two functions:

solve : C → σ × C− × C?

finalize : σ × C− × C? → σ × C−

Function solve takes a set of constraints and produces a
partial solution σ : U→T mapping unification variables
to types, a set of unsatisfiable constraints C− indicating type
errors, and a set of possibly satisfiable constraintsC? that may
or may not hold in a larger context. The intermediate solutions
are not necessarily ground substitutions since domain U is a
subset of domain T. While intermediate solutions discharge
equality constraints, they do not necessarily eliminate all
unification variables. Function finalize assumes a closed
world and either solves the constraints in C? or marks them
as unsatisfiable. We include C? for type systems that require
(partially) context-sensitive constraint solving. For example,
for PCF with subtyping, C? contains constraints that encode
lower and upper bounds on type variables. In practice, to
achieve good performance, it is important to normalize the
constraints in C? and represent them compactly.

Using solve, we can modify type rules such that they im-
mediately solve the constraints they generate. Type rules then
propagate the composed solutions from their own constraints
and all subderivations. For example, we obtain the follow-
ing definition of T-APP, where we write σ1 ◦ σ2 to denote
substitution composition.1

T-APP

e1 : T1 | σ1 | C
−
1 | C

?
1 | R1

e2 : T2 | σ2 | C
−
2 | C

?
2 | R2

U is fresh merge(R1, R2) = R|C
solve(C ∪ {T1 = T2→U}) = (σ3, C

−
3 , C

?
3)

σ1 ◦ σ2 ◦ σ3 = σ

e1 e2 : U | σ | C−1 ∪C
−
2 ∪C

−
3 | C

?
1∪C

?
2∪C

?
3 | R

This gives rise to an incremental type checker check2 :
e→T×σ×C−×C?×R using the incrementalization scheme
from above. In contrast to check1, check2 actually conducts
incremental constraint solving since we incorporated con-

1 Similar to requirements merging, the composition of substitutions can yield
additional constraints when the domains of the substitutions overlap, which
can be easily resolved by additional constraint solving. We omit this detail
to keep the presentation concise.



straint solving into the type rules. The only constraints we
have to solve non-incrementally are those in C?, for which
we use finalize on the root node.

Let us revisit the example expression notfac from above.
When changing the if -condition or recursive call, we ob-
tain the same number of regenerated constraints. However,
instead of reusing previously generated constraints, check2

reuses previously computed solutions. This means that after
a change, we only have to solve the newly generated con-
straints. For example, after the initial type check, we never
have to solve the constraints of mul again, because it does not
change. As our performance evaluation in Section 6 shows,
incremental constraint solving significantly improves incre-
mental performance and, somewhat surprisingly, also the
performance of the initial type check.

4.3 Eager Substitution
Co-contextual type rules satisfy an interesting property that
enables eager substitution of constraint solutions. Namely,
the constraints in independent subexpressions yield non-
conflicting substitutions.

This statement holds for two reasons. First, every time
a type rule requires a fresh unification variable U , this
variable cannot be generated fresh by any other type rule.
Thus, U cannot occur in constraints generated while type
checking any independent subexpression. Hence, there can
be at most one type assigned to U by a constraint. Second,
we formulated co-contextual type rules in a way that strictly
separates user-defined type variables X from unification
variables U generated by type rules. While a unification
variable is generated fresh once, a user-defined type variable
X can occur multiple times in the syntax tree, for example
within type annotations of different λ-abstractions. Thus, type
checking independent subexpressions can yield constraints
that jointly constrain X . When we solve such constraints
independently, there is the danger of assigning different types
to X , which would require coordination. However, since the
substitutions computed by solve map unification variables
to types and user-defined type variables are not considered
unification variables, this situation cannot occur.

check2 propagated substitutions up the tree. However, as
substitutions are non-conflicting, we can eagerly apply the
substitution within the type rule, thus avoiding its propagation
altogether. For example, we can redefine type rule T-APP as
follows:

T-APP

e1 : T1 | C
−
1 | C

?
1 | R1 e2 : T2 | C

−
2 | C

?
2 | R2

U is fresh merge(R1, R2) = R|C
solve(C ∪ {T1 = T2→U}) = (σ,C−3 , C

?
3)

C− = C−1 ∪ C
−
2 ∪ C

−
3 C? = C?

1 ∪ C
?
2 ∪ C

?
3

e1 e2 : σ(U) | σ(C−) | σ(C?) | σ(R)

In this type rule, the substitution σ is not propagated. Instead,
we directly apply it to all components of the type rule’s result.
By applying the substitution, we eliminate all unification vari-

ables U ∈ dom(σ) from the result. But then, as unification
variables are not shared between independent trees, there is
no need to propagate the substitution itself.

This design yields an incremental type-check function
check3 : e→T × C− × C? ×R. Compared to the previous
version, this type checker can improve both the initial and
incremental performance because it avoids the propagation,
composition, and memoization of substitutions. As our perfor-
mance evaluation in Section 6 shows, we achieve best perfor-
mance by using a hybrid approach that stores and propagates
small substitutions but eagerly applies larger substitutions
that bind ten or more variables.

5. Technical Realization
We have developed efficient incremental type checkers in
Scala for PCF and for each of the extensions described in
Section 3. The source code is available online at

https://github.com/seba--/incremental.

In-tree memoization. Implementing incremental type check-
ing as described in the previous section requires memoization
to map expressions to previously computed typing informa-
tion. When type checking an expression, we first check if a
type has been previously memoized, in which case we return
this type without further computation. For better memory and
time performance, we do not use a lookup table, but memoize
previously computed types directly in the syntax tree. As a
consequence of in-tree memoization, trees that are equivalent
but represented as separate objects do not share their memo-
ized types. To avoid this, our representation supports syntax
representations with sharing based on acyclic object graphs.
To support tree changes efficiently, our expressions store a
mutable list of child expressions. We encode an incremen-
tal change to a syntax tree via an update to the parent’s list
of child expressions. If the new child has a memoized type,
we keep it and invalidate the parent’s type. If the child has
no memoized type, dependency tracking will invalidate the
parent’s type automatically.

Efficient incremental type checking. The incrementaliza-
tion scheme described in Section 4.1 (1) selects all non-
memoized subexpressions, (2) closes them under parent re-
lationship, (3) orders them in syntax-tree post-order, and (4)
iterates over them to recompute and memoize types. To im-
plement this scheme efficiently, we merge these operations
into a single post-order tree traversal. During the traversal,
we recompute and memoize the type of a subexpression if
the type was not computed before or if the type of any di-
rect subexpression was recomputed during the same traversal.
This traversal has the same semantics as the scheme pre-
sented before, but avoids the materialization and iteration
over intermediate collections of subexpressions.

Constraint systems. The implementation details of the con-
straint systems heavily depend on the supported language con-
structs. To simplify the definition of incremental type check-

https://github.com/seba--/incremental


ers, our framework provides an abstract constraint-system
component that captures the commonalities of different con-
straint systems, but abstracts from the internal representation
and processing of constraints.

For PCF, the constraint system is straightforward and
simply solves equational constraints by unification. The
extensions of PCF introduce record-field type constraints,
universal-type substitution constraints and subtype con-
straints. Some of these constraints cannot be immediately
solved when they are generated but only later when more
information about the constrained type variables is available.
For good performance, we represent such constraints com-
pactly and normalize them eagerly whenever new constraints
are added to the constraint system. In particular, for sub-
typing, our constraint solver relies on ideas from local type
inference [20] and subtype-constraint simplification [21].
That is, we keep track of the lower and upper bounds on
type variables and gradually refine them. Type variables
have a polarity (covariant, contravariant or invariant), which
determines whether to maximize or minimize the type of a
variable. We transitively normalize newly generated subtyp-
ing constraints to subtyping constraints on type variables.

6. Performance Evaluation
We evaluate the performance of non-incremental and incre-
mental co-contextual type checking through micro-bench-
marking. Specifically, we compare the performance of the
following five PCF type checkers on a number of synthesized
input programs:2

• DU: Standard contextual constraint-based down-up type
checker (base line) that propagates contexts downward
and types upward.
• BU1: Co-contextual bottom-up type checker with incre-

mental constraint generation (Section 4.1).
• BU2: Like BU1 but with incremental constraint solving

(Section 4.2).
• BU3: Like BU2 but with eager substitution (Section 4.3).
• BU4: Like BU3 but only eagerly substitute when |σ|≥10.

We expect to show two results with our evaluation. First, when
running non-incrementally, our co-contextual type checkers
have performance comparable to the standard contextual type
checker DU. Second, after an incremental program change,
our co-contextual type checkers outperform the standard con-
textual type checker DU. Moreover, our evaluation provides
some initial data for comparing the performance of the co-
contextual type checkers BU1 to BU4.

Input data. We run the type checkers on synthesized input
expressions of varying sizes. We use balanced binary syntax
trees T (Nh, l1 . . . ln) of height h with binary inner nodes N

2 The benchmarking code and raw data is available online at
https://github.com/seba--/incremental.

and leaves l1 . . . ln, where n = 2h−1. In particular, we run
the type checkers for heights h ∈ {2, 4, 6, 8, 10, 12, 14, 16},
inner nodes N ∈ {+, app}, and leaf sequences consisting
of numeric literals (1 . . . n), a single variable (x . . . x), or a
sequence of distinct variables (x1 . . . xn).

We chose these trees as input to explore the impact of
context requirements. Trees with numeric literals (1 . . . n)
as leaves are type checked under an empty typing context
and yield an empty requirement set. In contrast, trees with
a single variable (x . . . x) as leaves are type checked under
a typing context with a single entry, but co-contextual type
checking introduces a distinct unification variable for each
variable occurrence and has to perform lots of requirement
merging yielding additional constraints. Finally, trees with a
sequence of distinct variables (x1 . . . xn) are type checked
under a typing context with n entries and also yield a re-
quirement set with n entries. In the latter case, requirement
merging does not yield any additional constraints because
all variables are distinct. We chose addition and application
as inner nodes because they yield constraints of different
complexity {T1 = Num, T2 = Num} and {T1 = T2→U},
respectively.

We do not use sharing of subtrees, thus our largest trees
have 216 − 1 = 65535 nodes. For comparison, the largest
source file of Apache Ant 1.9.4 has 17814 Java syntax-tree
nodes. In our synthesized expressions, all variables occurring
in a λ-expression at the top of the generated tree are bound.
Instead of type annotations, we rely on the type checkers to
infer the type of bound variables. Some of the synthesized
expressions are ill-typed, namely when applying a number in
place of a function and when applying a variable to itself. This
allows us to also evaluate the run time of failing type checks.
We leave the evaluation of co-contextual type checkers on
real-world programs written in modern languages like Java
for future work.

Experimental setup. We measure the performance of a
type checker in terms of the number of syntax-tree nodes
it processes per millisecond. We use ScalaMeter3 to measure
the wall-clock run times of our Scala implementations of the
above type checkers. ScalaMeter ensures proper JVM warm
up, takes a sequence of measurements, eliminates outliers,
and computes the mean run time of the rest. We performed the
benchmark on a 3Ghz octa-core Intel Xeon E5-1680 machine
with 12GB RAM, running Mac OS X 10.10.4, Scala 2.11.5
and Oracle JDK 8u5 with a fixed JVM heap size of 4GB.

Based on the mean run time and the size of the input
expression tree, we calculate the nonincremental performance
#nodes=2

h−1
run time in ms of a type checker on different inner-node and
leaf-node combinations. For each combination, we report the
mean performance over all height configurations as well as
the speedup relative to DU. Moreover, we report the overall
performance of each checker as the mean performance over

3 http://scalameter.github.io

https://github.com/seba--/incremental
http://scalameter.github.io


Tree DU BU1 BU2 BU3 BU4

T(+
h
, 1 . . . n) 1078.37 836.70 (0.78) 1164.15 (1.08) 736.81 (0.68) 1109.52 (1.03)

T(+
h
, x . . . x) 714.74 91.37 (0.13) 267.46 (0.37) 254.92 (0.36) 241.36 (0.34)

T(+
h
, x1 . . . xn) 188.27 67.77 (0.36) 218.55 (1.16) 176.66 (0.94) 211.82 (1.13)

T(apph
, 1 . . . n) 219.27 94.56 (0.43) 302.76 (1.38) 357.14 (1.63) 294.18 (1.34)

T(apph
, x . . . x) 185.84 27.17 (0.15) 68.38 (0.37) 127.96 (0.69) 104.09 (0.56)

T(app h
, x1 . . . xn) 119.41 58.33 (0.49) 130.91 (1.10) 132.23 (1.11) 153.57 (1.29)

overall performance 417.65 195.98 (0.39) 358.70 (0.91) 297.62 (0.90) 352.42 (0.95)
(a) Nonincremental performance in nodes per millisecond (speedup relative to DU).

Tree DU BU1 BU2 BU3 BU4

T(+
h
, 1 . . . n) 1507.64 n/a 37028.61 (24.56) 28532.45 (18.93) 36277.34 (24.06)

T(+
h
, x . . . x) 1147.44 n/a 2852.65 (2.49) 9699.62 (8.45) 11512.60 (10.03)

T(+
h
, x1 . . . xn) 386.18 n/a 1165.87 (3.02) 1168.82 (3.03) 1670.72 (4.33)

T(apph
, 1 . . . n) 224.08 n/a 1564.35 (6.98) 1911.00 (8.53) 2194.19 (9.79)

T(apph
, x . . . x) 223.05 n/a 78.55 (0.35) 795.25 (3.57) 777.94 (3.49)

T(app h
, x1 . . . xn) 124.49 n/a 609.23 (4.89) 728.50 (5.85) 1178.55 (9.47)

overall performance 602.15 n/a 7216.54 (7.05) 7139.27 (8.06) 8935.22 (10.19)
(b) Incremental performance in nodes per millisecond (speedup relative to DU).

Figure 8. Nonincremental and incremental type-checking performance for PCF.

all tree shapes. For BU1, we were not able to measure the
performance for h = 14 and h = 16 due to high garbage-
collection overheads and consequent timeouts.

For measuring incremental performance, we fix the height
of the input syntax tree at h = 16 (due to timeouts, we
excluded BU1 from this experiment). We first perform a
full initial type check. To simulate incremental changes, we
invalidate all types stored for the left-most subtree of height
k ∈ {2, 4, 6, 8, 10, 12, 14, 16}. We measure the wall-clock
run times for rechecking the partially invalidated syntax
trees. We calculate the mean performance of a recheck
#nodes=2

h−1
run time in ms relative to the total size of the syntax tree. We
report the mean performance over all height configurations k,
the speedup relative to DU, and the overall performance as
the mean performance over all tree shapes.

Nonincremental performance. Figure 8(a) shows the non-
incremental performance numbers for different tree config-
urations with speedups relative to DU in parentheses. First,
note that all type checkers except BU1 are relatively fast in
that they process a syntax tree of height 16 with 65535 nodes
in between 157ms and 220ms (number of nodes divided by
nodes per ms). BU1 is substantially slower, especially con-
sidering that we had to abort the executions for h = 14 and
h = 16.

On average, type checker DU processes 417.65 syntax-
tree nodes per millisecond. BU2, BU3, and BU4 perform only
slightly worse than DU. By inspecting individual rows in
Figure 8(a), we see that co-contextual type checkers actually

outperform DU in many cases. For example, BU4 is faster
than DU when leaves are numeric expressions or distinct
variables. However, all co-contextual type checkers perform
comparatively bad when all leaves of the syntax refer to
a single variable because a large number of requirement
merging is needed. For example, in a tree of height 16 we
have 215 = 32768 references to the same variable and
216 − 215 − 1 = 32767 calls to merge, each of which
generates a constraint to unify the types of the variable
references. In summary, we can say that BU2 and BU4 have
run-time costs similar to those of DU, but their performance
varies with respect to variable occurrences.

Incremental performance. Figure 9 shows the incremental
performance of DU (blue), BU2 (orange), BU3 (green), and
BU4 (red) on T (app16, x1 . . . xn). The x-axis shows the
height of the invalidated subexpression; the y-axis shows
the run time of the four type checkers. DU does not support
incremental type checking and therefore takes the same time
to recheck the input of size 216 − 1 independent of the size
of the invalidated subexpression. In contrast, BU2, BU3, and
BU4 run considerably faster. Especially for small changes,
incremental type checking provides large speedups. However,
the graph also reveals that the incremental type checking does
not scale down to small changes lineally. Instead, we observe
that incremental rechecking takes roughly the same time
when invalidating a subexpression of height k ∈ {2, 4, 6, 8}.
This is because our incremental type checkers need to traverse
the whole syntax tree once in order to find the invalidated
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Figure 9. Incremental running time on T (app16, x1 . . . xn)

for changes of size 2height − 1.

subexpression. Thus, even a small change incurs the cost of
traversing the syntax tree once.

Figure 8(b) presents a bigger picture of the incremental
performance, where we report the mean performance over
all height configurations k of the invalidated subexpression.
Since DU does not support incremental type checking, it
has to recheck the whole syntax tree nonincrementally for
every change. The numbers for DU differ from the numbers
reported in Figure 8(a) because we fixed the height to h = 16.
For the co-contextual type checkers, we see a significant
performance improvement of up to 24.56x. Incremental type
checkers BU3 and BU4 also achieve good speedups when all
leaves refer to the same variable, which yielded slowdowns
in the nonincremental case.

The co-contextual type checkers BU2, BU3, BU4 follow
different substitution strategies, where the results indicate
that the choice of strategy noticeably influences performance.
Deferring substitutions until the final step (BU2) and im-
mediate substitutions (BU3) compare worse to a balanced
strategy (BU4), where the type checker defers substitution un-
til incremental constraint solving generates a certain amount
of solutions.

7. Related Work
Co-contextual type rules are different from type inference,
because type inference relies on the context to coordinate the
types of variables [17]. That is, type inference assigns the
same type to all references of the same bound variable. In
contrast, co-contextual type checking assigns each variable
reference a fresh type variable and coordinates them through
requirement merging.

Our co-contextual formulation of type rules is related to
prior work on principal typing [11, 25], not to be confused
with principal types. A principal typing of some expression is
a derivation that subsumes all other derivations. Specifically, a
principal typing (if it exists) requires the weakest context and
provides the strongest type possible for the given expression.

Principal typing finds application in type inference where,
similar to our work, the minimal context requirements can
be inferred automatically. We extend the work on principal
typing by identifying the duality between contexts and con-
text requirements as a method for systematically constructing
co-contextual type systems. Such a method has not been for-
mulated in previous work. Moreover, prior work on principal
typing only considered ad-hoc incrementalization for type
checking top-level definitions, whereas we describe a method
for efficient fine-grained incremental type checking.

Other formulations of type systems related to our co-
contextual one have also been used in the context of compo-
sitional compilation [3] and the compositional explanation
of type errors [7]. However, these systems only partially
eliminated the context. In the work on compositional com-
pilation [3], type checking within a module uses a standard
contextual formulation that coordinates the types of param-
eters and object self-references this. For references to other
modules, the type checker generates constraints that are re-
solved by the linker. Using our method for constructing co-
contextual type systems, we can generalize this type system
to eliminate the local context as well, thus enabling com-
positional compilation for individual methods. In the work
on compositional explanations of type errors [7], only the
context for monomorphic variables is eliminated, whereas a
context for polymorphic variables is propagated top-down.
Our extension for parametric polymorphism demonstrated
that our co-contextual formulation of type rules can support
polymorphic variables and eliminate the context entirely.

Snelting, Henhapl, and Bahlke’s work on PSG and context
relations [5, 22, 23] supports incremental analyses beyond
traditional type checking and provide a join mechanism that
is similar to our merge operation. However, context relations
are very different from our proposal both conceptually as well
as technically. Conceptually, our main conceptual finding is
the duality between contexts and co-contexts that informs the
design of co-contextual type checkers. For example, we used
this duality to essentially derive bottom-up type checkers that
support subtyping and polymorphism. In contrast, it is not
obvious how to extend context relations and their unification-
based approach to support subtyping (beyond enumerating
subtyping for base types like int or float) or user-defined
polymorphism (with explicit type application). To use context
relations, the user has to come up with clever encodings
using functionally augmented terms. The duality we found
provides a principle for systematically identifying appropriate
encodings. Technically, we do not use relations with cross-
references to represent analysis results and we do not rely
on a separate name resolution that runs before type checking.
Instead, we use user-supplied constraint systems and context
requirements. In particular, this enables us to solve constraints
locally or globally and to apply solutions eagerly or propagate
solutions up the tree (with performance impacts as shown in
Section 6).



Kahn, Despeyroux, et al.’s work on Typol [9, 13] com-
piles inference rules to Prolog. Thus, Typol benefits from
Prolog’s support for solving predicates such as tcheck(C,E,T)
for any of the variables. In contrast, our main contribution
is to systematically eliminate the context through duality.
In particular, the practicality of using Prolog to infer con-
text requirements is not documented, and it is not clear if
the minimal context is always found. Attali et al. present an
incremental evaluator for a large class of Typol programs in-
cluding type checkers [4]. However, their incrementalization
requires that the context is stable and does not change. If the
context changes, the previous computation is discarded and
gets repeated.

Meertens describes an incremental type checker for the
programming language B [15]; it collects fine-grained type re-
quirements, but is not clear on requirement merging and also
does not solve type requirements incrementally. Johnson and
Walz describe a contextual type checker that incrementally
normalizes type constraints while type checking a program
in order to precisely identify the cause of type errors [12].
Aditya and Nikhil describe an incremental Hindley/Milner
type system that only supports incremental rechecking of top-
level definitions [2]. Miao and Siek describe a type checker
for multi-staged programming [16]; type checking in later
stages is incremental with respect to earlier stages, relying on
the fact that types only get refined by staging but assumptions
on the type of an expression never have to be revoked.

Wachsmuth et al. describe a task engine for name reso-
lution and type checking [24]. After a source file changes,
the incremental type checker generates new tasks for this
file. The task engine reuses cached task results where pos-
sible, computes tasks that have not been seen before, and
invalidates cached results that depend on tasks that have been
removed. The type checker relies on an incremental name
analysis, whose tasks are incrementally maintained by the
same engine.

Eclipse’s JDT performs incremental compilation through
fine-grained dependency tracking.4 It evolved from IBM’s
VisualAge [6], which stores the code and configuration of
a software project in an in-memory database with separate
entries for different artifacts, such as methods, variables, or
classpaths. The system tracks dependencies between individ-
ual artifacts in order to update the compilation incrementally.
Similarly, Facebook’s Flow5 and Hack6 languages feature
incremental type checking through a background server that
watches source files in order to invalidate the type of changed
files and files that are affected by them. Unfortunately, not
much information on the incremental type checkers of Eclipse
and Facebook is available, and it is not clear how to construct
similar incremental type checkers systematically.

4 http://eclipse.org/jdt/core/
5 http://flowtype.org
6 http://hacklang.org

Finally, there are general-purpose engines for incremental
computations. Before implementing incremental type check-
ers directly, we experimented with an implementation of
co-contextual type rules based on an incremental SQL-like
language developed by Mitschke et al. [18]. In our exper-
iment, the overhead of general-purpose incrementalization
was significant and too large for the fine-grained incremen-
tal type checking that we are targeting. For this reason, we
did not further consider other general-purpose engines for
incremental computations, such as attribute grammars [8] or
self-adjusting computations [1].

Our implementation strategy is similar to the general-
purpose incrementalization system Adapton [10]. Like Adap-
ton, after a program (data) modification, we also only rerun
the type checker (computation) when its result is explicitly
required again. This way, multiple program modifications
can accumulate and be handled by a single type-check run.
In contrast to Adapton, we also propagate dirty flags only
on-demand.

8. Conclusions and Future Work
We presented a co-contextual formulation for type rules
and described a method for systematically constructing co-
contextual type systems. A co-contextual formulation of
type rules avoids coordination between subderivations, which
makes this formulation well-suited for parallel and incremen-
tal type checking. In this paper, we focused on incremental
type checking and described a method for developing effi-
cient incremental type checkers on top of co-contextual type
systems. In particular, we applied memoization to avoid re-
computing derivations for unchanged subexpressions. This
enables fine-grained incremental type checking.

We presented co-contextual type systems for PCF and ex-
tensions for records, parametric polymorphism, and subtyp-
ing, and implemented corresponding incremental type check-
ers. Our performance evaluation shows that co-contextual
type checking for PCF has performance comparable to stan-
dard contextual type checking, and incrementalization can
improve performance significantly.

In future work, we want to explore parallel type checking
based on a co-contextual formulation of type rules. Besides
avoiding coordination for generating fresh type variables,
parallelization also requires efficient strategies for distributing
the syntax tree to and collecting the subresults from multiple
workers while keeping the coordination overhead minimal.

Moreover, we are currently developing a co-contextual
type system for Java, which involves complicated type rules
and elaborate context requirements on field types and method
signatures. This development will lead to a fine-grained
incremental type checker for Java and will provide insights
into the scalability and applicability of our approach.
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A. Equivalence of Contextual and
Co-Contextual PCF

In this appendix we provide the proof to Theorem 1, showing
that our formulations of contextual and co-contextual PCF
are equivalent.

Recall that we call a syntactic entity ground if it does
not contain unification variables and we write Γ ⊇ R if
Γ(x) = R(x) for all x ∈ dom(R).

Lemma 1. Let merge(R1, R2) = R|C , Γ ⊇ σ1(R1), Γ ⊇
σ2(R2), and σ1(R1) and σ2(R2) be ground. Then σ1 ◦ σ2
solves C.

Proof. By the definition of merge ,C = {R1(x) = R2(x) | x ∈
dom(R1) ∩ dom(R2)}. Since Γ ⊇ σi(Ri), we know Γ(x) =
σi(Ri(x)) for all x ∈ dom(Ri). In particular, Γ(x) =
σ1(R1(x)) = σ2(R2(x)) for all x ∈ dom(R1) ∩ dom(R2).
Thus, σ1 ◦ σ2 solves C because (σ1 ◦ σ2)(R1(x)) =
σ1(R1(x)) = σ2(R2(x)) = (σ1 ◦ σ2)(R2(x)) for all
x ∈ dom(R1) ∩ dom(R2), because σ1(R1) and σ2(R2) are
ground.

Theorem 1 (Equivalence of contextual PCF and co-contex-
tual PCF). A program e is typeable in contextual PCF if and
only if it is typeable in co-contextual PCF:

Γ ` e : T | C and solve(C) = σ such that
σ(T ) and σ(Γ) are ground

if and only if
e : T ′ | C ′ | R and solve(C ′) = σ′ such that
σ′(T ′) and σ′(R) are ground

If e is typeable in contextual and co-contextual PCF as above,
then σ(T ) = σ′(T ′) and σ(Γ) ⊇ σ′(R).

Proof. We first show that typeability in contextual PCF
entails typeability in co-contextual PCF (⇒) with matching
types and contexts/requirements. We proceed by structural
induction on e.

• Case n with Γ ` n : T | C.
By inversion, T = Num and C = ∅.
We choose T ′ = Num , C ′ = ∅, R = ∅, and σ′ = ∅.
Then e : T ′ | C ′ | R holds, σ(T ) = Num = σ′(T ′),
Γ ⊇ ∅ = σ′(R), and σ′(T ′) and σ′(R) are ground.

• Case x with Γ ` x : T | C.
By inversion, Γ(x) = T and C = ∅.
We choose T ′ = U , C ′ = ∅, R = {x :U}, and σ′ =
{U 7→T}.
Then e : T ′ | C ′ | R holds, σ(T ) = T = σ′(U) =
σ′(T ′), Γ ⊇ {x :T} = σ′(R), σ′(T ′) and σ′(R) are
ground because T is ground.

• Case λx :T1. e with Γ ` λx :T1. e : T | C.
By inversion, x :T1; Γ ` e : T2 | Ce, T = T1→T2, and
C = Ce.
Let solve(C) = σ.

By IH, e : T ′2 | C
′
e | Re with solve(C ′e) = σ′e, σe(T2) =

σ′e(T
′
2), (x :T1; Γ) ⊇ σ′e(Re), σ′e(T

′
2) is ground, and

σ′e(Re) is ground.
We choose T ′ = T1→T ′2 and R = Re − x.

If x ∈ dom(Re), then Re(x) = Ue for some Ue.
We choose C ′ = C ′e ∪ {T1 = Re(x)} and σ′ =
σ′e ◦ {Ue 7→T1}.
Then e : T ′ | C ′ | R holds and σ′ solves C ′e and
σ′(T1) = T1 = σ′(Ue) = σ′(Re(x)). Moreover,
σ(T ) = T1→σ(T2) = T1→σ′(T ′2) = σ′(T ′), Γ ⊃
σ′(Re − x), σ′(T ′) is ground because T1 and σ′(T ′2)
are ground, and σ′(R) is ground because σ′e(Re) is
ground.
If x 6∈ dom(Re), we choose C ′ = C ′e and σ′ = σ′e.
Then e : T ′ | C ′ | R holds, σ′ solves C ′, σ(T ) =
T1→σ(T2) = T1→σ′(T ′2) = σ′(T ′), Γ ⊃ σ′(Re −
x), σ′(T ′) is ground because T1 and σ′(T ′2) are ground,
and σ′(R) is ground because σ′e(Re) is ground.

• Case e1 e2 with Γ ` e1 e2 : T | C.
By inversion, Γ ` e1 : T1 | C1, Γ : e2 | T2 | C2, T = U ,
and C = C1 ∪ C2 ∪ {T1 = T2→U}.
Let solve(C) = σ, which also solves C1, C2, and T1 =
T2→U such that σ(U) is ground.
By IH for i ∈ {1, 2}, ei : T ′i | C

′
i | Ri with solve(C ′i) =

σ′i, σ(Ti) = σ′(T ′i ), Γ ⊇ σ′i(Ri), σ′i(T
′
i ) is ground, and

σ′i(Ri) is ground.
Let merge(R1, R2) = R|C′

r
. We choose T ′ = U , C ′ =

C ′1 ∪ C
′
2 ∪ {T

′
1 = T ′2→U} ∪ C ′r, and σ′ = σ′1 ◦ σ

′
2 ◦

{U 7→σ(U)}.
Then e1 e2 : T ′ | C ′ | R holds and σ′ solves C ′ because it
solves C ′1, C ′2, C ′r (by Lemma 1), and σ′(T ′1) = σ(T1) =
σ(T2)→σ(U) = σ′(T ′2)→σ′(U) = σ′(T ′2→U).
Moreover, σ′(T ′) = σ′(U) = σ(U) = σ(T ), Γ ⊇
σ′(R1) ∪ σ′(R2) ⊇ σ′(R) by the definition of merge,
σ′(T ′) is ground because σ(U) is ground, and σ′(R) is
ground because σ′i(Ri) are ground.

• Case e1 + e2 with Γ ` e1 + e2 : T | C.
By inversion, Γ ` e1 : T1 | C1, Γ : e2 | T2 | C2, T =
Num , and C = C1 ∪ C2 ∪ {T1 = Num, T2 = Num}.
Let solve(C) = σ, which also solves C1, C2,T1 = Num ,
and T2 = Num .
By IH for i ∈ {1, 2}, ei : T ′i | C

′
i | Ri with solve(C ′i) =

σ′i, σi(Ti) = σ′(T ′i ), Γ ⊇ σ′(Ri), σ′(T ′i ) is ground, and
σ′(Ri) is ground.
Let merge(R1, R2) = R|C′

r
. We choose T ′ = Num ,

C ′ = C ′1 ∪ C
′
2 ∪ {T

′
1 = Num, T ′2 = Num} ∪ C ′r, and

σ′ = σ′1 ◦ σ
′
2.

Then e1 + e2 : T ′ | C ′ | R and σ′ solves C ′ because it
solves C ′1, C ′2, C ′r (by Lemma 1), and σ′(T ′i ) = σ(Ti) =
Num .
Moreover, σ′(T ′) = Num = σ(T ), Γ ⊇ σ′(R1) ∪
σ′(R2) ⊇ σ′(R) by the definition of merge, σ′(T ′) =



Num is ground, and σ′(R) is ground because σ′i(Ri) are
ground.

• Case if0 e1 e2 e3 with Γ ` if0 e1 e2 e3 : T | C.
By inversion for i ∈ {1, 2, 3}, Γ ` ei : Ti | Ci, T = T2,
andC = C1 ∪ C2 ∪ C3 ∪ {T1 = Num, T2 = T3}.
Let solve(C) = σ, which also solves C1, C2, C3, T1 =
Num , and T2 = T3.
By IH, ei : T ′i | C

′
i | Ri with solve(C ′i) = σ′i, σ

′
i(T
′
i ) =

σ(Ti), Γ ⊇ σ′i(Ri), σ′(T ′i ) is ground, and σ′(Ri) is
ground.
Let merge(R2, R3) = R2,3|C′

2,3
, merge(R1, R2,3) =

R1,2,3|C′
1,2,3

. We choose R = R1,2,3, T ′ = T ′2, C ′ =

C ′1 ∪C
′
2 ∪C

′
3 ∪ {T

′
1 = Num, T ′2 = T ′3} ∪C

′
2,3 ∪C

′
1,2,3,

and σ = σ1 ◦ σ2 ◦ σ3.
Then if0 e1 e2 e3 : T ′ | C ′ | R and σ′ solves C ′

because it solves C ′1, C ′2,C ′3, C ′2,3 (by Lemma 1), C ′1,2,3
(by Lemma 1), and σ′(T ′1) = σ(T1) = Num as well as
σ′(T ′2) = σ(T2) = σ(T3) = σ′(T ′3).
Moreover, σ′(T ′) = σ′(T ′2) = σ(T2) = σ(T ), Γ ⊇
σ′(R1) ∪ σ′(R2) ∪ σ′(R3) ⊇ σ′(R1) ∪ σ′(R2,3) ⊇
σ′(R1,2,3) by the definition of merge, σ′(T ′) is ground
because σ′(T ′2) is ground, and σ′(R) is ground because
σ′i(Ri) are ground.

• Case fix e with Γ ` fix e : T | C.
By inversion, Γ ` e : Te | Ce, T = U , and C =
Ce ∪ {Te = U→U}.
Let solve(C) = σ, which solves Ce and Te = U→U
such that σ(U) is ground.
By IH, e : T ′e | C

′
e | Re with solve(C ′e) = σ′e, σ′e(T

′
e) =

σ(Te), Γe ⊇ σ′(Re), σ′(T ′e) is ground, and σ′(Re) is
ground.
We choose R = Re, T ′ = U , C ′ = C ′e ∪{T

′
e = U→U},

and σ′ = σ′e ◦ {U 7→σ(U)}.
Then fix e : T ′ | C ′ | R and σ′ solves C ′ because
it solves C ′e and σ′(T ′e) = σ(Te) = σ(U→U) =
σ(U)→σ(U) = σ′(U)→σ′(U) = σ′(U→U).
Moreover, σ′(T ′) = σ′(U) = σ(U) = σ(T ), Γ = Γe ⊇
σ′(Re) = σ′(R), σ′(T ′) is ground because σ(U) ground,
and σ′(R) is ground because σ′(Re) is ground.

Next we show that typeability in co-contextual PCF entails
typeability in contextual PCF (⇐) with matching types
and contexts/requirements. We again proceed by structural
induction on e.

• Case n with n : T ′ | C ′ | R.
By inversion, T ′ = Num , C ′ = ∅, and R = ∅.
Let solve(C ′) = σ′. We choose Γ = ∅, T = Num ,
C = ∅, σ = ∅.
Then Γ ` e : T | C holds, σ(T ) = Num = σ′(T ′),
Γ = ∅ = σ′(R), and σ(T ) is ground.

• Case x with x : T ′ | C ′ | R.
By inversion, T ′ = U , C ′ = ∅, and R = {x :U}.

Let σ′(U) = Tx for some Tx that we know is ground.
We choose Γ = x :Tx; ∅, T = Tx, C = ∅, and σ = ∅.
Then Γ ` e : T | C holds, σ(T ) = Tx = σ′(U),Γ =
(x :Tx; ∅) ⊇ {x :Tx} = σ′(R), and σ(T ) is ground
because Tx is ground.

• Case λx :T1. e with λx :T1. e : T ′ | C ′ | R.
By inversion, e : T ′2 | C

′
e | Re, T ′ = T1→T ′2, and

R = Re − x for some T ′2, C ′e, and Re.
Let solve(C ′) = σ′, which also solves C ′e.
By IH, Γe ` T2 : e | Ce with solve(Ce) = σe, σe(T2) =
σ′(T ′2), Γe ⊇ σ′(Re), and σe(T2) is ground. The latter
entails Γe(x) = σ′(Re(x)) for all x ∈ dom(Re).
We choose T = T1→T2, C = Ce, and σ = σe such that
σ(T ) = T1→σ(T2) = T1→σ′(T ′2) = σ′(T ′) and σ(T )
is ground because T1 and σe(T2) are ground.

If x ∈ dom(Re), then (T1 = Re(x)) ∈ C ′ and
T1 = σ′(Re(x)) = Γe(x). Thus, by swapping Γe =
(x :T1; Γ) for some Γ such that Γ ` e : T | C holds, σ
solvesC, and Γ ⊇ Γe−x ⊇ σ

′(Re)−x = σ′(Re−x).
If x 6∈ dom(Re), the x is not free in e and we get
x :T1; (Γe − x) ` T2 : e | Ce by strengthening and
weakening. We choose Γ = Γe − x such that (i) holds
and Γ = Γe − x ⊇ σ

′(Re)− x = σ′(Re − x).

• Case e1 e2 with e1 e2 : T ′ | C ′ | R.
By inversion, e1 : T ′1 | C

′
1 | R1, e2 : T ′2 | C

′
2 | R2,

merge(R1, R2) = R|C′
r
, T ′ = U , and C ′ = C ′1 ∪ C

′
2 ∪

{T ′1 = T ′2→U} ∪ C ′.
Let solve(C ′) = σ′, which also solves C ′1, C ′2, C ′r, and
T ′1 = T ′2→U such that σ′(U) is ground.
By IH for i ∈ {1, 2}, Γi ` ei : Ti | Ci with solve(Ci) =
σi, σi(Ti) = σ′(T ′i ), Γi ⊇ σ

′(Ri), and σi(Ti) is ground.
We choose Γ = Γ1; Γ2, T = U , C = C1 ∪ C2 ∪ {T1 =
T2→U}, and σ = σ1 ◦ σ2 ◦ {U 7→σ

′(U)}.
Since σi(Γi) ⊇ σ′(Ri), Γ only extends Γ1 and Γ2 with
variables that are not free in e1 and e2, respectively.Thus,
Γ ` ei : Ti | Ci and Γ ` e1 e2 : U | C. σ solves C
because it solves C1 and C2 and σ(T1) = σ′(T ′1) =
σ′(T ′2→U) = σ′(T ′2)→σ′(U) = σ(T2)→σ(U) =
σ(T2→U).
Moreover, σ(T ) = σ(U) = σ′(U) = σ′(T ′), Γ =
Γ1; Γ2 ⊇ σ′(R1) ∪ σ′(R2) ⊇ σ′(R) by the definition
of merge, and σ(T ) is ground because σ′(U) is ground.

• Case e1 + e2 with e1 + e2 : T ′ | C ′ | R.
By inversion for i ∈ {1, 2}, ei : T ′i | C

′
i | Ri,

merge(R1, R2) = R|C′
r
, T ′ = Num , and C ′ =

C ′1 ∪ C
′
2 ∪ {T

′
1 = Num, T ′2 = Num} ∪ C ′r.

Let solve(C ′) = σ′, which also solves C ′1, C ′2, C ′r,
T ′1 = Num , and T ′2 = Num .
By IH, Γi ` ei : Ti | Ci with solve(Ci) = σi,
σi(Ti) = σ′(T ′i ), Γi ⊇ σ

′(Ri), and σi(Ti) is ground.
We choose Γ = Γ1; Γ2, T = Num ,C = C1∪C2∪{T1 =
Num, T2 = Num}, and σ = σ1 ◦ σ2.



Since σi(Γi) ⊇ σ′(Ri), Γ only extends Γ1 and Γ2 with
variables that are not free in e1 and e2, respectively.Thus,
Γ ` ei : Ti | Ci and Γ ` e1 + e2 : Num | C.
σ solves C because it solves C1 and C2 and σ(Ti) =
σ′(T ′i ) = Num .
Moreover, σ(T ) = Num = σ′(T ′), Γ = Γ1; Γ2 ⊇
σ′(R1) ∪ σ′(R2) ⊇ σ′(R) by the definition of merge,
and σ(T ) = Num is ground.

• Case if0 e1 e2 e3 with if0 e1 e2 e3 : T ′ | C ′ | R.
By inversion for i ∈ {1, 2, 3}, ei : T ′i | C

′
i | Ri,

merge(R2, R3) = R2,3|C2,3
, merge(R1, R2,3) = R1,2,3|C1,2,3

,
T ′ = T , R = R1,2,3, and C ′ = C ′1 ∪ C

′
2 ∪ C

′
3 ∪ {T

′
1 =

Num, T ′2 = T ′3} ∪ C2,3 ∪ C1,2,3.
Let solve(C ′) = σ′, which also solves C ′1, C ′2, C ′3, C2,3,
C1,2,3, T ′1 = Num , and T ′2 = T ′3.
By IH, Γi ` ei : Ti | Ci with solve(Ci) = σi,
σi(Ti) = σ′(T ′i ), Γi ⊇ σ

′(Ri), and σi(Ti) is ground.
We choose Γ = Γ1; Γ2; Γ3, T = T2, C = C1∪C2∪C3∪
{T1 = Num, T2 = T3}, and σ = σ1 ◦ σ2 ◦ σ3.
Since σi(Γi) ⊇ σ′(Ri), Γ only extends Γ1, Γ2, and
Γ3 with variables that are not free in e1, e2, and e3,
respectively.Thus, Γ ` ei : Ti | Ci and Γ ` if0 e1 e2 e3 :
T2 | C.

σ solves C because it solves C1, C2, and C3 and σ(T1) =
σ′(T ′1) = Num as well as σ(T2) = σ′(T ′2) = σ′(T ′3) =
σ(T3).
Moreover, σ(T ) = σ2(T2) = σ′(T ′2) = σ′(T ′), Γ =
Γ1; Γ2; Γ3 ⊇ σ′(R1) ∪ σ′(R2) ∪ σ′(R3) ⊇ σ′(R1) ∪
σ′(R2,3) ⊇ σ′(R1,2,3) by the definition of merge, and
σ(T ) is ground because σ2(T2) is ground.

• Case fix e with fix e : T ′ | C ′ | R.
By inversion, e : T ′e | C

′
e | Re, T ′ = U ,C ′ = C ′e∪{T

′
e =

U→U}, and R = Re.
Let solve(C ′) = σ′, which solves C ′e and T ′e = U→U
such that σ′(U) is ground.
By IH, Γe ` e : Te | Ce with solve(Ce) = σe,
σe(Te) = σ′(T ′e), Γe ⊇ σ

′(Re), and σ(Te) is ground.
We choose Γ = Γe, T = U , C = Ce ∪ {Te = U→U},
and σ = σe ◦ {U 7→σ

′(U)}.
Then Γ ` fix e : T | C and σ solves C because
it solves Ce and σ(Te) = σ′(T ′e) = σ′(U→U) =
σ′(U)→σ′(U) = σ(U)→σ(U) = σ(U→U). More-
over, σ(T ) = σ(U) = σ′(U) = σ′(T ′), Γ = Γe ⊇
σ′(Re) = σ′(R), and σ(T ) is ground because σ′(U) is
ground.
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